Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-κB1

نویسندگان

  • Wenwen Wang
  • Min Yan
  • Qiuhong Ji
  • Jinbiao Lu
  • Yuhua Ji
  • Juling Ji
  • Emanuela Felley-Bosco
چکیده

Hepatic stellate cells (HSCs) activation is essential to the pathogenesis of liver fibrosis. Exploring drugs targeting HSC activation is a promising anti-fibrotic strategy. In the present study, we found suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, prominently suppressed the activation phenotype of a human hepatic stellate cell line-LX2. The production of collagen type I and α-smooth muscle actin (α-SMA) as well as the proliferation and migration of LX2 cells were significantly reduced by SAHA treatment. To determine the molecular mechanisms underlying this suppression, genome wild gene regulation by SAHA was determined by Affymetrix 1.0 human cDNA array. Upon SAHA treatment, the abundance of 331 genes was up-regulated and 173 genes was down-regulated in LX2 cells. Bioinformatic analyses of these altered genes highlighted the high mobility group box 1 (HMGB1) pathway was one of the most relevant pathways that contributed to SAHA induced suppression of HSCs activation. Further studies demonstrated the increased acetylation of intracellular HMGB1 in SAHA treated HSCs, and this increasing is most likely to be responsible for SAHA induced down-regulation of nuclear factor kappa B1 (NF-κB1) and is one of the main underlying mechanisms for the therapeutic effect of SAHA for liver fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-117: Gene Expression and Developmental State of Mouse Cloned Embryos after Treatment with Histone Deacetylase Inhibitor,Suberoylanilide Hydroxamic Acid (SAHA)

Background: It is known that acetylation level of the nuclear histones in cloned embryos is lower compare to normally developed embryos. Histone deacetylas inhibitors (HDACi) with improvement of acetylation level in these embryos can affect embryo quality in pre-implantation stage and expression level of different genes especially developmental genes. Materials and Methods: In this research, SA...

متن کامل

NF-κB1 deficiency stimulates the progression of non-alcoholic steatohepatitis (NASH) in mice by promoting NKT-cell-mediated responses.

Growing evidence indicates that NF-κB (nuclear factor κB) activation contributes to the pathogenesis of NASH (non-alcoholic steatohepatisis). Among the NF-κB subunits, p50/NF-κB1 has regulatory activities down-modulating NF-κB-mediated responses. In the present study, we investigated the effects of NF-κB1 deficiency on the progression of NASH induced by feeding mice on an MCD (methionine/cholin...

متن کامل

High mobility group box 1 activates Toll like receptor 4 signaling in hepatic stellate cells.

AIMS The aim of the present study was to investigate the effect of high mobility group box 1 (HMGB1), a damage pattern molecule that signals the presence of necrosis, on TLR4 signaling in hepatic stellate cells (HSC). MAIN METHODS Immortalized mouse HSC lines JS1, JS2, and JS3 that were either TLR4(+/+), TLR4(-/-), or MyD88(-/-) were transfected with NF-κB or AP-1 responsive luciferase report...

متن کامل

Suberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosis through increase DR5 expression.

Suberoylanilide hydroxamic acid has been shown to selectively induce tumor apoptosis in cell cultures and animal models in several types of cancers and is about as a promising new class of chemotherapeutic agents. In addition, suberoylanilide hydroxamic acid showed synergistic anticancer activity with radiation, cisplatin, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in s...

متن کامل

High Mobility Group Box-1 Promotes the Proliferation and Migration of Hepatic Stellate Cells via TLR4-Dependent Signal Pathways of PI3K/Akt and JNK

BACKGROUND The migration of hepatic stellate cells (HSCs) is essential to the hepatic fibrotic response, and recently High-mobility group box 1 (HMGB1) has been shown up-regulated during liver fibrosis. Nevertheless, whether HMGB1 can modulate the proliferation and migration of HSCs is poorly understood, as well as the involved intracellular signaling. In this study, we examined the effect of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015